This documentation is automatically generated by online-judge-tools/verification-helper
#include "algorithm/Graph/Others/prim.hpp"
重み付き無向連結グラフにおける最小全域木 (MST: Minimum Spanning Tree) を求める.
アルゴリズムの計算量は,グラフのノード数を $\lvert V \rvert$ ,辺数を $\lvert E \rvert$ とすると,$\mathcal{O}(\lvert E \rvert \log \lvert V \rvert)$ となる.
#ifndef ALGORITHM_PRIM_HPP
#define ALGORITHM_PRIM_HPP 1
/**
* @brief Prim's Algorithm(最小全域木)
* @docs docs/Graph/Others/prim.md
*/
#include <cassert>
#include <functional>
#include <queue>
#include <utility>
#include <vector>
namespace algorithm {
template <typename T>
class Prim {
std::vector<std::vector<std::pair<int, T> > > m_g; // m_g[v][]:=(ノードvの隣接リスト). pair of (to, cost).
public:
Prim() : Prim(0) {}
explicit Prim(size_t vn) : m_g(vn) {}
// ノード数を返す.
int order() const { return m_g.size(); }
// 重み付き無向辺を張る.
void add_edge(int u, int v, T cost) {
assert(0 <= u and u < order());
assert(0 <= v and v < order());
m_g[u].emplace_back(v, cost);
m_g[v].emplace_back(u, cost);
}
// 重み付き無向連結グラフにおける最小全域木のコストを求める.O(|E|*log|V|).
T prim(int rt = 0) {
assert(0 <= rt and rt < order());
T res = 0;
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int> >, std::greater<std::pair<T, int> > > pque;
pque.emplace(0, rt);
std::vector<bool> seen(order(), false);
while(!pque.empty()) {
auto [cost, u] = pque.top();
pque.pop();
if(seen[u]) continue;
seen[u] = true;
res += cost;
for(const auto &[v, cost] : m_g[u]) {
if(!seen[v]) pque.emplace(cost, v);
}
}
return res;
}
};
} // namespace algorithm
#endif
#line 1 "algorithm/Graph/Others/prim.hpp"
/**
* @brief Prim's Algorithm(最小全域木)
* @docs docs/Graph/Others/prim.md
*/
#include <cassert>
#include <functional>
#include <queue>
#include <utility>
#include <vector>
namespace algorithm {
template <typename T>
class Prim {
std::vector<std::vector<std::pair<int, T> > > m_g; // m_g[v][]:=(ノードvの隣接リスト). pair of (to, cost).
public:
Prim() : Prim(0) {}
explicit Prim(size_t vn) : m_g(vn) {}
// ノード数を返す.
int order() const { return m_g.size(); }
// 重み付き無向辺を張る.
void add_edge(int u, int v, T cost) {
assert(0 <= u and u < order());
assert(0 <= v and v < order());
m_g[u].emplace_back(v, cost);
m_g[v].emplace_back(u, cost);
}
// 重み付き無向連結グラフにおける最小全域木のコストを求める.O(|E|*log|V|).
T prim(int rt = 0) {
assert(0 <= rt and rt < order());
T res = 0;
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int> >, std::greater<std::pair<T, int> > > pque;
pque.emplace(0, rt);
std::vector<bool> seen(order(), false);
while(!pque.empty()) {
auto [cost, u] = pque.top();
pque.pop();
if(seen[u]) continue;
seen[u] = true;
res += cost;
for(const auto &[v, cost] : m_g[u]) {
if(!seen[v]) pque.emplace(cost, v);
}
}
return res;
}
};
} // namespace algorithm