This documentation is automatically generated by online-judge-tools/verification-helper
#include "algorithm/Math/Convolution/discrete_fourier_transform.hpp"
離散フーリエ変換 (DFT: Discrete Fourier Transform) を用いた畳み込みを行う.
具体的には,長さ $N$ の数列 $\lbrace a_0, a_1, \ldots, a_{N-1} \rbrace$ と長さ $M$ の数列 $\lbrace b_0, b_1, \ldots, b_{M-1} \rbrace$ に対して,
\[c_i = \sum_{k=0}^{i} a_k b_{i-k}\]となる長さ $N + M - 1$ の数列 $\lbrace c_0, c_1, \ldots, c_{N+M-1} \rbrace$ を求める. 計算量は $\mathcal{O}((N + M)^2)$ .
数列の長さや要素の値が大きくなると,誤差も大きくなることに注意.
#ifndef ALGORITHM_DISCRETE_FOURIER_TRANSFORM_HPP
#define ALGORITHM_DISCRETE_FOURIER_TRANSFORM_HPP 1
/**
* @brief Discrete Fourier Transform(離散フーリエ変換)
* @docs docs/Math/Convolution/discrete_fourier_transform.md
*/
#include <algorithm>
#include <cmath>
#include <complex>
#include <type_traits>
#include <vector>
namespace algorithm {
namespace dft {
using D = double;
const D PI = std::acos(-1.0);
// Discrete Fourier Transform(離散フーリエ変換). O(N^2).
void transform(std::vector<std::complex<D> > &a, bool inv = false) {
if(a.size() == 0) return;
const int n = a.size();
std::vector<std::complex<D> > res(n, 0.0);
D ang = 2 * PI / n;
if(inv) ang = -ang;
for(int i = 0; i < n; ++i) {
D tmp = ang * i;
for(int j = 0; j < n; ++j) res[i] += a[j] * std::polar<D>(1.0, tmp * j);
}
if(inv) {
for(int i = 0; i < n; ++i) res[i] /= n;
}
a = res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type>
std::vector<Type> convolve_naive(const std::vector<Type> &a, const std::vector<Type> &b) {
const int n = a.size(), m = b.size();
if(n == 0 or m == 0) return std::vector<Type>();
std::vector<Type> res(n + m - 1, 0);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
}
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type, typename std::enable_if_t<std::is_integral_v<Type>, bool> = false>
std::vector<Type> convolve(const std::vector<Type> &a, const std::vector<Type> &b) {
if(a.size() == 0 or b.size() == 0) return std::vector<Type>();
const int n = a.size() + b.size() - 1;
std::vector<std::complex<D> > na(n, 0.0), nb(n, 0.0);
std::copy(a.begin(), a.end(), na.begin());
std::copy(b.begin(), b.end(), nb.begin());
transform(na), transform(nb);
for(int i = 0; i < n; ++i) na[i] *= nb[i];
transform(na, true);
std::vector<Type> res(n);
for(int i = 0; i < n; ++i) res[i] = na[i].real() + (na[i].real() < 0.0 ? -0.5 : 0.5);
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type, typename std::enable_if_t<std::is_floating_point_v<Type>, bool> = false>
std::vector<Type> convolve(const std::vector<Type> &a, const std::vector<Type> &b) {
if(a.size() == 0 or b.size() == 0) return std::vector<Type>();
const int n = a.size() + b.size() - 1;
std::vector<std::complex<D> > na(n, 0.0), nb(n, 0.0);
std::copy(a.begin(), a.end(), na.begin());
std::copy(b.begin(), b.end(), nb.begin());
transform(na), transform(nb);
for(int i = 0; i < n; ++i) na[i] *= nb[i];
transform(na, true);
std::vector<Type> res(n);
for(int i = 0; i < n; ++i) res[i] = na[i].real();
return res;
}
} // namespace dft
} // namespace algorithm
#endif
#line 1 "algorithm/Math/Convolution/discrete_fourier_transform.hpp"
/**
* @brief Discrete Fourier Transform(離散フーリエ変換)
* @docs docs/Math/Convolution/discrete_fourier_transform.md
*/
#include <algorithm>
#include <cmath>
#include <complex>
#include <type_traits>
#include <vector>
namespace algorithm {
namespace dft {
using D = double;
const D PI = std::acos(-1.0);
// Discrete Fourier Transform(離散フーリエ変換). O(N^2).
void transform(std::vector<std::complex<D> > &a, bool inv = false) {
if(a.size() == 0) return;
const int n = a.size();
std::vector<std::complex<D> > res(n, 0.0);
D ang = 2 * PI / n;
if(inv) ang = -ang;
for(int i = 0; i < n; ++i) {
D tmp = ang * i;
for(int j = 0; j < n; ++j) res[i] += a[j] * std::polar<D>(1.0, tmp * j);
}
if(inv) {
for(int i = 0; i < n; ++i) res[i] /= n;
}
a = res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type>
std::vector<Type> convolve_naive(const std::vector<Type> &a, const std::vector<Type> &b) {
const int n = a.size(), m = b.size();
if(n == 0 or m == 0) return std::vector<Type>();
std::vector<Type> res(n + m - 1, 0);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
}
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type, typename std::enable_if_t<std::is_integral_v<Type>, bool> = false>
std::vector<Type> convolve(const std::vector<Type> &a, const std::vector<Type> &b) {
if(a.size() == 0 or b.size() == 0) return std::vector<Type>();
const int n = a.size() + b.size() - 1;
std::vector<std::complex<D> > na(n, 0.0), nb(n, 0.0);
std::copy(a.begin(), a.end(), na.begin());
std::copy(b.begin(), b.end(), nb.begin());
transform(na), transform(nb);
for(int i = 0; i < n; ++i) na[i] *= nb[i];
transform(na, true);
std::vector<Type> res(n);
for(int i = 0; i < n; ++i) res[i] = na[i].real() + (na[i].real() < 0.0 ? -0.5 : 0.5);
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type, typename std::enable_if_t<std::is_floating_point_v<Type>, bool> = false>
std::vector<Type> convolve(const std::vector<Type> &a, const std::vector<Type> &b) {
if(a.size() == 0 or b.size() == 0) return std::vector<Type>();
const int n = a.size() + b.size() - 1;
std::vector<std::complex<D> > na(n, 0.0), nb(n, 0.0);
std::copy(a.begin(), a.end(), na.begin());
std::copy(b.begin(), b.end(), nb.begin());
transform(na), transform(nb);
for(int i = 0; i < n; ++i) na[i] *= nb[i];
transform(na, true);
std::vector<Type> res(n);
for(int i = 0; i < n; ++i) res[i] = na[i].real();
return res;
}
} // namespace dft
} // namespace algorithm