This documentation is automatically generated by online-judge-tools/verification-helper
#include "algorithm/Math/Convolution/number_theoretic_transform.hpp"
数論変換 (NTT: Number Theoretic Transform) を用いた畳み込みを行う.
具体的には,長さ $N$ の数列 $\lbrace a_0, a_1, \ldots, a_{N-1} \rbrace$ と長さ $M$ の数列 $\lbrace b_0, b_1, \ldots, b_{M-1} \rbrace$ に対して,
\[c_i = \sum_{k=0}^{i} a_k b_{i-k}\]となる長さ $N + M - 1$ の数列 $\lbrace c_0, c_1, \ldots, c_{N+M-1} \rbrace$ を $\mathcal{O}((N + M) \log (N + M))$ で求める.
#ifndef ALGORITHM_NUMBER_THEORETIC_TRANSFORM_HPP
#define ALGORITHM_NUMBER_THEORETIC_TRANSFORM_HPP 1
/**
* @brief Number Theoretic Transform(数論変換)
* @docs docs/Math/Convolution/number_theoretic_transform.md
*/
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <utility>
#include <vector>
#include "../ModularArithmetic/modint_base.hpp"
namespace algorithm {
namespace ntt {
constexpr int MOD = 998'244'353; // 998'244'353 = 2^23 * 7 * 17 + 1.
constexpr int MOD2 = 167'772'161; // 167'772'161 = 2^25 * 5 + 1.
constexpr int MOD3 = 469'762'049; // 469'762'049 = 2^26 * 7 + 1.
constexpr int MOD4 = 754'974'721; // 754'974'721 = 2^24 * 3^2 * 5 + 1.
constexpr int MOD5 = 1'107'296'257; // 1'107'296'257 = 2^25 * 3 * 11 + 1.
constexpr int MOD6 = 1'224'736'769; // 1'224'736'769 = 2^24 * 73 + 1.
constexpr int MOD7 = 1'711'276'033; // 1'224'736'769 = 2^25 * 3 * 17 + 1.
constexpr int MOD8 = 1'811'939'329; // 1'224'736'769 = 2^26 * 3^3 + 1.
// 素数判定.O(√N).
template <typename Type>
constexpr bool is_prime(Type n) {
assert(n >= 0);
if(n < 2) return false;
if(n == 2) return true;
if(n % 2 == 0) return false;
for(Type p = 3; p * p <= n; p += 2) {
if(n % p == 0) return false;
}
return true;
}
// 繰り返し二乗法(mod付き).n^k (mod m) を求める.O(logK).
constexpr int mod_pow(long long n, long long k, int m) {
assert(k >= 0);
assert(m >= 1);
long long res = 1;
n %= m;
while(k > 0) {
if(k & 1LL) res = res * n % m;
n = n * n % m;
k >>= 1;
}
return res;
}
// 素数pを法とする最小の原始根を求める.
constexpr int primitive_root(int p) {
assert(p >= 2);
if(p == 2) return 1;
if(p == MOD) return 3;
if(p == MOD2) return 3;
if(p == MOD3) return 3;
if(p == MOD4) return 11;
if(p == MOD5) return 10;
if(p == MOD6) return 3;
if(p == MOD7) return 29;
if(p == MOD8) return 13;
assert(is_prime(p));
std::array<int, 20> divs({2}); // divs[]:=(p-1の素因数).
int cnt = 1;
int n = (p - 1) / 2;
while(n % 2 == 0) n /= 2;
for(int q = 3; q * q <= n; q += 2) {
if(n % q == 0) {
divs[cnt++] = q;
while(n % q == 0) n /= q;
}
}
if(n > 1) divs[cnt++] = n;
for(int g = 2;; ++g) {
bool ok = true;
for(int i = 0; i < cnt; ++i) {
if(mod_pow(g, (p - 1) / divs[i], p) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
// Number Theoretic Transform(数論変換).
// 引数の数列の長さは2のべき乗であること.O(N*logN).
template <class mint, typename std::enable_if_t<is_modint_v<mint>, bool> = false>
void transform(std::vector<mint> &a, bool inv = false) {
const int n = a.size();
if(n == 0) return;
assert((mint::modulus() - 1) % n == 0);
static bool first = true;
static std::array<mint, 30> ws, inv_ws; // ws[k]:=(2^k乗根), inv_ws[k]:=(2^k乗根の逆元).
if(first) {
mint &&pr = primitive_root(mint::modulus());
int rank = 0;
while(!((mint::modulus() - 1) & 1 << rank)) rank++;
ws[rank] = pr.pow((mint::modulus() - 1) >> rank);
inv_ws[rank] = ws[rank].inv();
for(int k = rank - 1; k >= 0; --k) {
ws[k] = ws[k + 1] * ws[k + 1];
inv_ws[k] = inv_ws[k + 1] * inv_ws[k + 1];
}
first = false;
}
int lb = 0; // lb:=log2(n).
while(1 << lb < n) lb++;
assert(n == 1 << lb);
for(int i = 0; i < n; ++i) {
int j = 0;
for(int k = 0; k < lb; ++k) j |= (i >> k & 1) << (lb - 1 - k);
if(i < j) std::swap(a[i], a[j]);
}
for(int b = 1, k = 1; b < n; b <<= 1, ++k) {
mint w = 1;
for(int i = 0; i < b; ++i) {
for(int j = 0; j < n; j += b << 1) {
mint &&tmp = a[i + j + b] * w;
a[i + j + b] = a[i + j] - tmp;
a[i + j] += tmp;
}
w *= (inv ? inv_ws[k] : ws[k]);
}
}
if(inv) {
mint &&tmp = mint(n).inv();
for(int i = 0; i < n; ++i) a[i] *= tmp;
}
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type>
std::vector<Type> convolve_naive(const std::vector<Type> &a, const std::vector<Type> &b) {
const int n = a.size(), m = b.size();
if(n == 0 or m == 0) return std::vector<Type>();
std::vector<Type> res(n + m - 1, 0);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
}
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N*logN).
template <class mint, typename std::enable_if_t<is_modint_v<mint>, bool> = false>
std::vector<mint> convolve(std::vector<mint> a, std::vector<mint> b) {
if(a.size() == 0 or b.size() == 0) return std::vector<mint>();
const int n = a.size() + b.size() - 1;
int m = 1;
while(m < n) m <<= 1;
a.resize(m, 0), b.resize(m, 0);
transform(a), transform(b);
for(int i = 0; i < m; ++i) a[i] *= b[i];
transform(a, true);
a.resize(n);
return a;
}
} // namespace ntt
} // namespace algorithm
#endif
#line 1 "algorithm/Math/Convolution/number_theoretic_transform.hpp"
/**
* @brief Number Theoretic Transform(数論変換)
* @docs docs/Math/Convolution/number_theoretic_transform.md
*/
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <utility>
#include <vector>
#line 1 "algorithm/Math/ModularArithmetic/modint_base.hpp"
#line 5 "algorithm/Math/ModularArithmetic/modint_base.hpp"
namespace algorithm {
class ModintBase {};
template <class T>
using is_modint = std::is_base_of<ModintBase, T>;
template <class T>
inline constexpr bool is_modint_v = is_modint<T>::value;
} // namespace algorithm
#line 17 "algorithm/Math/Convolution/number_theoretic_transform.hpp"
namespace algorithm {
namespace ntt {
constexpr int MOD = 998'244'353; // 998'244'353 = 2^23 * 7 * 17 + 1.
constexpr int MOD2 = 167'772'161; // 167'772'161 = 2^25 * 5 + 1.
constexpr int MOD3 = 469'762'049; // 469'762'049 = 2^26 * 7 + 1.
constexpr int MOD4 = 754'974'721; // 754'974'721 = 2^24 * 3^2 * 5 + 1.
constexpr int MOD5 = 1'107'296'257; // 1'107'296'257 = 2^25 * 3 * 11 + 1.
constexpr int MOD6 = 1'224'736'769; // 1'224'736'769 = 2^24 * 73 + 1.
constexpr int MOD7 = 1'711'276'033; // 1'224'736'769 = 2^25 * 3 * 17 + 1.
constexpr int MOD8 = 1'811'939'329; // 1'224'736'769 = 2^26 * 3^3 + 1.
// 素数判定.O(√N).
template <typename Type>
constexpr bool is_prime(Type n) {
assert(n >= 0);
if(n < 2) return false;
if(n == 2) return true;
if(n % 2 == 0) return false;
for(Type p = 3; p * p <= n; p += 2) {
if(n % p == 0) return false;
}
return true;
}
// 繰り返し二乗法(mod付き).n^k (mod m) を求める.O(logK).
constexpr int mod_pow(long long n, long long k, int m) {
assert(k >= 0);
assert(m >= 1);
long long res = 1;
n %= m;
while(k > 0) {
if(k & 1LL) res = res * n % m;
n = n * n % m;
k >>= 1;
}
return res;
}
// 素数pを法とする最小の原始根を求める.
constexpr int primitive_root(int p) {
assert(p >= 2);
if(p == 2) return 1;
if(p == MOD) return 3;
if(p == MOD2) return 3;
if(p == MOD3) return 3;
if(p == MOD4) return 11;
if(p == MOD5) return 10;
if(p == MOD6) return 3;
if(p == MOD7) return 29;
if(p == MOD8) return 13;
assert(is_prime(p));
std::array<int, 20> divs({2}); // divs[]:=(p-1の素因数).
int cnt = 1;
int n = (p - 1) / 2;
while(n % 2 == 0) n /= 2;
for(int q = 3; q * q <= n; q += 2) {
if(n % q == 0) {
divs[cnt++] = q;
while(n % q == 0) n /= q;
}
}
if(n > 1) divs[cnt++] = n;
for(int g = 2;; ++g) {
bool ok = true;
for(int i = 0; i < cnt; ++i) {
if(mod_pow(g, (p - 1) / divs[i], p) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
// Number Theoretic Transform(数論変換).
// 引数の数列の長さは2のべき乗であること.O(N*logN).
template <class mint, typename std::enable_if_t<is_modint_v<mint>, bool> = false>
void transform(std::vector<mint> &a, bool inv = false) {
const int n = a.size();
if(n == 0) return;
assert((mint::modulus() - 1) % n == 0);
static bool first = true;
static std::array<mint, 30> ws, inv_ws; // ws[k]:=(2^k乗根), inv_ws[k]:=(2^k乗根の逆元).
if(first) {
mint &&pr = primitive_root(mint::modulus());
int rank = 0;
while(!((mint::modulus() - 1) & 1 << rank)) rank++;
ws[rank] = pr.pow((mint::modulus() - 1) >> rank);
inv_ws[rank] = ws[rank].inv();
for(int k = rank - 1; k >= 0; --k) {
ws[k] = ws[k + 1] * ws[k + 1];
inv_ws[k] = inv_ws[k + 1] * inv_ws[k + 1];
}
first = false;
}
int lb = 0; // lb:=log2(n).
while(1 << lb < n) lb++;
assert(n == 1 << lb);
for(int i = 0; i < n; ++i) {
int j = 0;
for(int k = 0; k < lb; ++k) j |= (i >> k & 1) << (lb - 1 - k);
if(i < j) std::swap(a[i], a[j]);
}
for(int b = 1, k = 1; b < n; b <<= 1, ++k) {
mint w = 1;
for(int i = 0; i < b; ++i) {
for(int j = 0; j < n; j += b << 1) {
mint &&tmp = a[i + j + b] * w;
a[i + j + b] = a[i + j] - tmp;
a[i + j] += tmp;
}
w *= (inv ? inv_ws[k] : ws[k]);
}
}
if(inv) {
mint &&tmp = mint(n).inv();
for(int i = 0; i < n; ++i) a[i] *= tmp;
}
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N^2).
template <typename Type>
std::vector<Type> convolve_naive(const std::vector<Type> &a, const std::vector<Type> &b) {
const int n = a.size(), m = b.size();
if(n == 0 or m == 0) return std::vector<Type>();
std::vector<Type> res(n + m - 1, 0);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
}
return res;
}
// 畳み込み.
// 数列a[], b[]に対して,c[i]=sum_{k=0}^{i} a[k]*b[i-k] となる数列c[]を求める.O(N*logN).
template <class mint, typename std::enable_if_t<is_modint_v<mint>, bool> = false>
std::vector<mint> convolve(std::vector<mint> a, std::vector<mint> b) {
if(a.size() == 0 or b.size() == 0) return std::vector<mint>();
const int n = a.size() + b.size() - 1;
int m = 1;
while(m < n) m <<= 1;
a.resize(m, 0), b.resize(m, 0);
transform(a), transform(b);
for(int i = 0; i < m; ++i) a[i] *= b[i];
transform(a, true);
a.resize(n);
return a;
}
} // namespace ntt
} // namespace algorithm