This documentation is automatically generated by online-judge-tools/verification-helper
#include "algorithm/String/longest_common_subsequence.hpp"
配列 $S, T$ に対し,最長共通部分列 (LCS: Longest Common Subsequence) を求める. 最長共通部分列とは,2つの配列において,双方に現れる部分列の中で最長のものを指す.
アルゴリズムの計算量は $\mathcal{O}(\lvert S \rvert \lvert T \rvert)$ となる.
#ifndef ALGORITHM_LONGEST_COMMON_SUBSEQUENCE_HPP
#define ALGORITHM_LONGEST_COMMON_SUBSEQUENCE_HPP 1
/**
* @brief Longest Common Subsequence(最長共通部分列)
* @docs docs/String/longest_common_subsequence.md
*/
#include <algorithm>
#include <vector>
namespace algorithm {
// 2つの配列に対して,最長共通部分列 (LCS: Longest Common Subsequence) を求める.
// 引数はSTLのシーケンスコンテナであること.O(|S|*|T|).
template <class Sequence>
Sequence lcs(const Sequence &s, const Sequence &t) {
const int n = s.size(), m = t.size();
// dp[i][j]:=(s[:i]とt[:j]のLCSの長さ).
std::vector<std::vector<int> > dp(n + 1, std::vector<int>(m + 1, 0));
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
dp[i + 1][j + 1] = (s[i] == t[j] ? dp[i][j] + 1 : std::max(dp[i][j + 1], dp[i + 1][j]));
}
}
Sequence sub(dp[n][m], 0); // sub[]:=(配列s, tのLCS).
int i = n - 1, j = m - 1, k = dp[n][m] - 1;
while(k >= 0) {
if(s[i] == t[j]) {
sub[k] = s[i];
i--, j--, k--;
} else if(dp[i + 1][j + 1] == dp[i][j + 1]) {
i--;
} else {
j--;
}
}
return sub;
}
} // namespace algorithm
#endif
#line 1 "algorithm/String/longest_common_subsequence.hpp"
/**
* @brief Longest Common Subsequence(最長共通部分列)
* @docs docs/String/longest_common_subsequence.md
*/
#include <algorithm>
#include <vector>
namespace algorithm {
// 2つの配列に対して,最長共通部分列 (LCS: Longest Common Subsequence) を求める.
// 引数はSTLのシーケンスコンテナであること.O(|S|*|T|).
template <class Sequence>
Sequence lcs(const Sequence &s, const Sequence &t) {
const int n = s.size(), m = t.size();
// dp[i][j]:=(s[:i]とt[:j]のLCSの長さ).
std::vector<std::vector<int> > dp(n + 1, std::vector<int>(m + 1, 0));
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
dp[i + 1][j + 1] = (s[i] == t[j] ? dp[i][j] + 1 : std::max(dp[i][j + 1], dp[i + 1][j]));
}
}
Sequence sub(dp[n][m], 0); // sub[]:=(配列s, tのLCS).
int i = n - 1, j = m - 1, k = dp[n][m] - 1;
while(k >= 0) {
if(s[i] == t[j]) {
sub[k] = s[i];
i--, j--, k--;
} else if(dp[i + 1][j + 1] == dp[i][j + 1]) {
i--;
} else {
j--;
}
}
return sub;
}
} // namespace algorithm