algorithm-dev

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub today2098/algorithm-dev

:heavy_check_mark: verify/aoj-DSL_2_B-segment_tree.test.cpp

Depends on

Code

#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_B"

#include <iostream>

#include "../algorithm/DataStructure/SegmentTree/segment_tree.hpp"

int main() {
    int n;
    int q;
    std::cin >> n >> q;

    algorithm::segment_tree::range_sum_segment_tree<int> segtree(n);

    while(q--) {
        int com;
        std::cin >> com;

        if(com == 0) {
            int x;
            int y;
            std::cin >> x >> y;
            --x;

            auto &&now = segtree.prod(x);
            segtree.set(x, now + y);
        } else {
            int x, y;
            std::cin >> x >> y;
            --x;

            auto &&ans = segtree.prod(x, y);
            std::cout << ans << "\n";
        }
    }
}
#line 1 "verify/aoj-DSL_2_B-segment_tree.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_B"

#include <iostream>

#line 1 "algorithm/DataStructure/SegmentTree/segment_tree.hpp"



#include <algorithm>
#include <cassert>
#include <initializer_list>
#line 8 "algorithm/DataStructure/SegmentTree/segment_tree.hpp"
#include <iterator>
#include <type_traits>
#include <vector>

#line 1 "algorithm/Math/Algebra/algebra.hpp"



#line 6 "algorithm/Math/Algebra/algebra.hpp"
#include <limits>
#include <numeric>
#line 9 "algorithm/Math/Algebra/algebra.hpp"
#include <utility>

namespace algorithm {

namespace algebra {

template <typename S>
class Set {
public:
    using value_type = S;

protected:
    value_type val;

public:
    constexpr Set() : val() {}
    constexpr Set(const value_type &val) : val(val) {}
    constexpr Set(value_type &&val) : val(std::move(val)) {}

    friend constexpr bool operator==(const Set &lhs, const Set &rhs) { return lhs.val == rhs.val; }
    friend std::istream &operator>>(std::istream &is, Set &rhs) { return is >> rhs.val; }
    friend std::ostream &operator<<(std::ostream &os, const Set &rhs) { return os << rhs.val; }

    constexpr value_type value() const { return val; }
};

template <typename S, auto op>
class Semigroup : public Set<S> {
    static_assert(std::is_invocable_r<S, decltype(op), S, S>::value);

    using base_type = Set<S>;

public:
    using value_type = typename base_type::value_type;

    constexpr Semigroup() : base_type() {}
    constexpr Semigroup(const value_type &val) : base_type(val) {}
    constexpr Semigroup(value_type &&val) : base_type(std::move(val)) {}

    friend constexpr Semigroup operator*(const Semigroup &lhs, const Semigroup &rhs) { return Semigroup(op(lhs.val, rhs.val)); }

    static constexpr auto get_op() { return op; }
};

template <typename S, auto op, auto e>
class Monoid : public Semigroup<S, op> {
    static_assert(std::is_invocable_r<S, decltype(e)>::value);

    using base_type = Semigroup<S, op>;

public:
    using value_type = typename base_type::value_type;

    constexpr Monoid() : base_type() {}
    constexpr Monoid(const value_type &val) : base_type(val) {}
    constexpr Monoid(value_type &&val) : base_type(std::move(val)) {}

    friend constexpr Monoid operator*(const Monoid &lhs, const Monoid &rhs) { return Monoid(op(lhs.val, rhs.val)); }

    static constexpr auto get_e() { return e; }
    static constexpr Monoid one() { return Monoid(e()); }  // return identity element.
};

template <typename S, auto op, auto e, auto inverse>
class Group : public Monoid<S, op, e> {
    static_assert(std::is_invocable_r<S, decltype(inverse), S>::value);

    using base_type = Monoid<S, op, e>;

public:
    using value_type = typename base_type::value_type;

    constexpr Group() : base_type() {}
    constexpr Group(const value_type &val) : base_type(val) {}
    constexpr Group(value_type &&val) : base_type(std::move(val)) {}

    friend constexpr Group operator*(const Group &lhs, const Group &rhs) { return Group(op(lhs.val, rhs.val)); }

    static constexpr auto get_inverse() { return inverse; }
    static constexpr Group one() { return Group(e()); }                // return identity element.
    constexpr Group inv() const { return Group(inverse(this->val)); }  // return inverse element.
};

template <typename F, auto compose, auto id, typename X, auto mapping>
class OperatorMonoid : public Monoid<F, compose, id> {
    static_assert(std::is_invocable_r<X, decltype(mapping), F, X>::value);

    using base_type = Monoid<F, compose, id>;

public:
    using value_type = typename base_type::value_type;
    using acted_value_type = X;

    constexpr OperatorMonoid() : base_type() {}
    constexpr OperatorMonoid(const value_type &val) : base_type(val) {}
    constexpr OperatorMonoid(value_type &&val) : base_type(std::move(val)) {}

    friend constexpr OperatorMonoid operator*(const OperatorMonoid &lhs, const OperatorMonoid &rhs) { return OperatorMonoid(compose(lhs.val, rhs.val)); }

    static constexpr auto get_mapping() { return mapping; }
    static constexpr OperatorMonoid one() { return OperatorMonoid(id()); }  // return identity mapping.
    constexpr acted_value_type act(const acted_value_type &x) const { return mapping(this->val, x); }
    template <class S>
    constexpr S act(const S &x) const {
        static_assert(std::is_base_of<Set<acted_value_type>, S>::value);
        return S(mapping(this->val, x.value()));
    }
};

namespace element {

template <typename S>
constexpr auto zero = []() -> S { return S(); };

template <typename S>
constexpr auto one = []() -> S { return 1; };

template <typename S>
constexpr auto min = []() -> S { return std::numeric_limits<S>::min(); };

template <typename S>
constexpr auto max = []() -> S { return std::numeric_limits<S>::max(); };

template <typename S>
constexpr auto one_below_max = []() -> S { return std::numeric_limits<S>::max() - 1; };

template <typename S>
constexpr auto lowest = []() -> S { return std::numeric_limits<S>::lowest(); };

template <typename S>
constexpr auto one_above_lowest = []() -> S { return std::numeric_limits<S>::lowest() + 1; };

}  // namespace element

namespace uoperator {

template <typename S>
constexpr auto identity = [](const S &val) -> S { return val; };

template <typename S>
constexpr auto negate = [](const S &val) -> S { return -val; };

}  // namespace uoperator

namespace boperator {

template <typename T, typename S = T>
constexpr auto plus = [](const T &lhs, const S &rhs) -> S { return lhs + rhs; };

template <typename T, typename S = T>
constexpr auto mul = [](const T &lhs, const S &rhs) -> S { return lhs * rhs; };

template <typename T, typename S = T>
constexpr auto bit_and = [](const T &lhs, const S &rhs) -> S { return lhs & rhs; };

template <typename T, typename S = T>
constexpr auto bit_or = [](const T &lhs, const S &rhs) -> S { return lhs | rhs; };

template <typename T, typename S = T>
constexpr auto bit_xor = [](const T &lhs, const S &rhs) -> S { return lhs ^ rhs; };

template <typename T, typename S = T>
constexpr auto min = [](const T &lhs, const S &rhs) -> S { return std::min<S>(lhs, rhs); };

template <typename T, typename S = T>
constexpr auto max = [](const T &lhs, const S &rhs) -> S { return std::max<S>(lhs, rhs); };

template <typename T, typename S = T>
constexpr auto gcd = [](const T &lhs, const S &rhs) -> S { return std::gcd(lhs, rhs); };

template <typename T, typename S = T>
constexpr auto lcm = [](const T &lhs, const S &rhs) -> S { return std::lcm(lhs, rhs); };

template <typename F, auto id, typename X = F>
constexpr auto assign_if_not_id = [](const F &lhs, const X &rhs) -> X {
    static_assert(std::is_invocable_r<F, decltype(id)>::value);
    return (lhs == id() ? rhs : lhs);
};

}  // namespace boperator

namespace monoid {

template <typename S>
using minimum = Monoid<S, boperator::min<S>, element::max<S>>;

template <typename S>
using minimum_safe = Monoid<S, boperator::min<S>, element::one_below_max<S>>;

template <typename S>
using maximum = Monoid<S, boperator::max<S>, element::lowest<S>>;

template <typename S>
using maximum_safe = Monoid<S, boperator::max<S>, element::one_above_lowest<S>>;

template <typename S>
using addition = Monoid<S, boperator::plus<S>, element::zero<S>>;

template <typename S>
using multiplication = Monoid<S, boperator::mul<S>, element::one<S>>;

template <typename S>
using bit_xor = Monoid<S, boperator::bit_xor<S>, element::zero<S>>;

}  // namespace monoid

namespace group {

template <typename S>
using addition = Group<S, boperator::plus<S>, element::zero<S>, uoperator::negate<S>>;

template <typename S>
using bit_xor = Group<S, boperator::bit_xor<S>, element::zero<S>, uoperator::identity<S>>;

}  // namespace group

namespace operator_monoid {

template <typename F, typename X = F>
using assign_for_minimum = OperatorMonoid<
    F, boperator::assign_if_not_id<F, element::max<F>>, element::max<F>,
    X, boperator::assign_if_not_id<F, element::max<F>, X>>;

template <typename F, typename X = F>
using assign_for_maximum = OperatorMonoid<
    F, boperator::assign_if_not_id<F, element::lowest<F>>, element::lowest<F>,
    X, boperator::assign_if_not_id<F, element::lowest<F>, X>>;

template <typename F, typename X = F>
using addition = OperatorMonoid<F, boperator::plus<F>, element::zero<F>, X, boperator::plus<F, X>>;

}  // namespace operator_monoid

}  // namespace algebra

}  // namespace algorithm


#line 13 "algorithm/DataStructure/SegmentTree/segment_tree.hpp"

namespace algorithm {

namespace segment_tree {

template <class Monoid>
class SegmentTree {
public:
    using monoid_type = Monoid;
    using value_type = monoid_type::value_type;

private:
    int m_sz;                         // m_sz:=(要素数).
    int m_n;                          // m_n:=(完全二分木の葉数).
    std::vector<monoid_type> m_tree;  // m_tree(2n)[]:=(完全二分木). 1-based index.

    void update(int k) { m_tree[k] = m_tree[k << 1] * m_tree[k << 1 | 1]; }
    void build() {
        for(int l = m_n >> 1, r = (m_n + m_sz - 1) >> 1; l >= 1; l >>= 1, r >>= 1) {
            for(int i = r; i >= l; --i) update(i);
        }
    }

public:
    // constructor. O(N).
    SegmentTree() : SegmentTree(0) {};
    explicit SegmentTree(int n) : m_sz(n), m_n(1) {
        assert(n >= 0);
        while(m_n < m_sz) m_n <<= 1;
        m_tree.assign(2 * m_n, monoid_type::one());
    }
    explicit SegmentTree(int n, const value_type &a) : SegmentTree(n, monoid_type(a)) {}
    explicit SegmentTree(int n, const monoid_type &a) : SegmentTree(n) {
        std::fill_n(m_tree.begin() + m_n, n, a);
        build();
    }
    template <std::input_iterator InputIter>
    explicit SegmentTree(InputIter first, InputIter last) : m_n(1), m_tree(first, last) {
        m_sz = m_tree.size();
        while(m_n < m_sz) m_n <<= 1;
        m_tree.reserve(2 * m_n);
        m_tree.insert(m_tree.begin(), m_n, monoid_type::one());
        m_tree.resize(2 * m_n, monoid_type::one());
        build();
    }
    template <typename T>
    explicit SegmentTree(std::initializer_list<T> il) : SegmentTree(il.begin(), il.end()) {}

    // 要素数を取得する.
    int size() const { return m_sz; }
    // k番目の要素をaに置き換える.O(log N).
    void set(int k, const value_type &a) { set(k, monoid_type(a)); }
    void set(int k, const monoid_type &a) {
        assert(0 <= k and k < size());
        k += m_n;
        m_tree[k] = a;
        while(k >>= 1) update(k);
    }
    // k番目の要素を取得する.O(1).
    value_type prod(int k) const {
        assert(0 <= k and k < size());
        return m_tree[k + m_n].value();
    }
    // 区間[l,r)の要素の総積を求める.O(log N).
    value_type prod(int l, int r) const {
        assert(0 <= l and l <= r and r <= size());
        monoid_type &&val_l = monoid_type::one(), &&val_r = monoid_type::one();
        for(l += m_n, r += m_n; l < r; l >>= 1, r >>= 1) {
            if(l & 1) val_l = val_l * m_tree[l++];
            if(r & 1) val_r = m_tree[--r] * val_r;
        }
        return (val_l * val_r).value();
    }
    // 区間全体の要素の総積を取得する.O(1).
    value_type prod_all() const { return m_tree[1].value(); }
    // pred(prod(l,r))==true となる区間の最右位値rを二分探索する.
    // ただし,区間[l,n)の要素はpred(S)によって区分化されていること.また,pred(e)==true であること.O(log N).
    template <bool (*pred)(value_type)>
    int most_right(int l) const {
        return most_right(l, [](const value_type &x) -> bool { return pred(x); });
    }
    template <typename Pred>
    int most_right(int l, Pred pred) const {
        static_assert(std::is_invocable_r<bool, Pred, value_type>::value);
        assert(0 <= l and l <= size());
        assert(pred(monoid_type::one().value()));
        if(l == m_sz) return m_sz;
        l += m_n;
        monoid_type &&val = monoid_type::one();
        do {
            while(!(l & 1)) l >>= 1;
            monoid_type &&tmp = val * m_tree[l];
            if(!pred(tmp.value())) {
                while(l < m_n) {
                    l <<= 1;
                    tmp = val * m_tree[l];
                    if(pred(tmp.value())) val = tmp, ++l;
                }
                return l - m_n;
            }
            val = tmp, ++l;
        } while((l & -l) != l);
        return m_sz;
    }
    // pred(prod(l,r))==true となる区間の最左位値lを二分探索する.
    // ただし,区間[0,r)の要素はpred(S)によって区分化されていること.また,pred(e)==true であること.O(log N).
    template <bool (*pred)(value_type)>
    int most_left(int r) const {
        return most_left(r, [](const value_type &x) -> bool { return pred(x); });
    }
    template <typename Pred>
    int most_left(int r, Pred pred) const {
        static_assert(std::is_invocable_r<bool, Pred, value_type>::value);
        assert(0 <= r and r <= size());
        assert(pred(monoid_type::one().value()));
        if(r == 0) return 0;
        r += m_n;
        monoid_type &&val = monoid_type::one();
        do {
            --r;
            while(r > 1 and (r & 1)) r >>= 1;
            monoid_type &&tmp = m_tree[r] * val;
            if(!pred(tmp.value())) {
                while(r < m_n) {
                    r = r << 1 | 1;
                    tmp = m_tree[r] * val;
                    if(pred(tmp.value())) val = tmp, --r;
                }
                return r + 1 - m_n;
            }
            val = tmp;
        } while((r & -r) != r);
        return 0;
    }
    void reset() { std::fill(m_tree.begin() + 1, m_tree.begin() + m_n + m_sz, monoid_type::one()); }

    friend std::ostream &operator<<(std::ostream &os, const SegmentTree &rhs) {
        os << "[\n";
        for(int l = 1, r = 2; r <= 2 * rhs.m_n; l <<= 1, r <<= 1) {
            for(int i = l; i < r; ++i) os << (i == l ? "  [" : " ") << rhs.m_tree[i].value();
            os << "]\n";
        }
        return os << "]";
    }
};

template <typename S>
using range_minimum_segment_tree = SegmentTree<algebra::monoid::minimum<S>>;

template <typename S>
using range_maximum_segment_tree = SegmentTree<algebra::monoid::maximum<S>>;

template <typename S>
using range_sum_segment_tree = SegmentTree<algebra::monoid::addition<S>>;

}  // namespace segment_tree

}  // namespace algorithm


#line 6 "verify/aoj-DSL_2_B-segment_tree.test.cpp"

int main() {
    int n;
    int q;
    std::cin >> n >> q;

    algorithm::segment_tree::range_sum_segment_tree<int> segtree(n);

    while(q--) {
        int com;
        std::cin >> com;

        if(com == 0) {
            int x;
            int y;
            std::cin >> x >> y;
            --x;

            auto &&now = segtree.prod(x);
            segtree.set(x, now + y);
        } else {
            int x, y;
            std::cin >> x >> y;
            --x;

            auto &&ans = segtree.prod(x, y);
            std::cout << ans << "\n";
        }
    }
}
Back to top page