This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/1/GRL_1_B"
#include <iostream>
#include "../algorithm/Graph/ShortestPath/bellman_ford.hpp"
int main() {
int n, m;
int r;
std::cin >> n >> m >> r;
algorithm::bellman_ford::default_bellman_ford<int> bellman_ford(n, m);
for(int i = 0; i < m; ++i) {
int s, t;
int d;
std::cin >> s >> t >> d;
bellman_ford.add_edge(s, t, d);
}
auto res = bellman_ford.bellman_ford(r);
if(res) {
std::cout << "NEGATIVE CYCLE" << std::endl;
return 0;
}
for(int i = 0; i < n; ++i) {
auto ans = bellman_ford.distance(i);
if(ans == bellman_ford.infinity()) std::cout << "INF" << "\n";
else std::cout << ans << "\n";
}
}
#line 1 "verify/aoj-GRL_1_B-bellman_ford.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/1/GRL_1_B"
#include <iostream>
#line 1 "algorithm/Graph/ShortestPath/bellman_ford.hpp"
#include <algorithm>
#include <cassert>
#include <limits>
#include <tuple>
#include <type_traits>
#include <vector>
namespace algorithm {
namespace bellman_ford {
template <typename T, auto inf>
class BellmanFord {
static_assert(std::is_invocable_r<T, decltype(inf)>::value);
public:
using value_type = T;
using weighted_edge_type = std::tuple<int, int, value_type>; // tuple of (from, to, weight).
private:
int m_vn; // m_vn:=(ノード数).
std::vector<weighted_edge_type> m_edges; // m_edges[]:=(辺リスト).
std::vector<value_type> m_d; // m_d[t]:=(ノードsからtへの最短距離).
std::vector<int> m_pre; // m_pre[t]:=(ノードtを訪問する直前のノード番号). 逆方向経路.
public:
BellmanFord() : BellmanFord(0) {}
explicit BellmanFord(int vn) : m_vn(vn), m_d(vn, inf()), m_pre(vn, -1) {
assert(vn >= 0);
}
explicit BellmanFord(int vn, int en) : BellmanFord(vn) {
assert(en >= 0);
m_edges.reserve(en);
}
static constexpr value_type infinity() { return inf(); }
// ノード数を返す.
int order() const { return m_vn; }
// 辺数を返す.
int size() const { return m_edges.size(); }
// 重み付き有向辺を張る.
void add_edge(int from, int to, value_type weight) {
assert(0 <= from and from < order());
assert(0 <= to and to < order());
m_edges.emplace_back(from, to, weight);
}
// グラフ全体から負閉路を検出する.O(|V||E|).
bool find_negative_cycle() const {
std::vector<value_type> nd(m_vn, 0);
for(int i = 0; i < m_vn; ++i) {
bool update = false;
for(const auto &[from, to, weight] : m_edges) {
if(nd[to] > nd[from] + weight) {
nd[to] = nd[from] + weight;
update = true;
}
}
if(!update) return false; // 負閉路なし.
}
return true; // 負閉路あり.
}
// ノードsから各ノードへの最短距離を求める.O(|V||E|).
bool bellman_ford(int s) {
assert(0 <= s and s < order());
std::fill(m_d.begin(), m_d.end(), inf());
m_d[s] = 0;
std::fill(m_pre.begin(), m_pre.end(), -1);
for(int i = 0; i < m_vn; ++i) {
bool update = false;
for(const auto &[from, to, weight] : m_edges) {
if(m_d[from] == inf()) continue;
if(m_d[to] > m_d[from] + weight) {
m_d[to] = m_d[from] + weight;
m_pre[to] = from;
update = true;
}
}
if(!update) return false; // 負閉路なし.
}
for(int i = 0; i < m_vn; ++i) {
bool update = false;
for(const auto &[from, to, weight] : m_edges) {
if(m_d[from] == inf() or m_d[to] == -inf()) continue;
if(m_d[from] == -inf() or m_d[to] > m_d[from] + weight) {
m_d[to] = -inf();
update = true;
}
}
if(!update) break;
}
return true; // 負閉路あり.
}
// ノードsからtへの最短距離を取得する.
value_type distance(int t) const {
assert(0 <= t and t < order());
return m_d[t];
}
// ノードsからtへの最短経路を復元する.
std::vector<int> shortest_path(int t) const {
assert(0 <= t and t < order());
std::vector<int> path;
if(distance(t) == -inf() or distance(t) == inf()) return path;
for(; t != -1; t = m_pre[t]) path.push_back(t);
path.shrink_to_fit();
std::reverse(path.begin(), path.end());
return path;
}
};
template <typename T>
using default_bellman_ford = BellmanFord<T, std::numeric_limits<T>::max>;
} // namespace bellman_ford
} // namespace algorithm
#line 6 "verify/aoj-GRL_1_B-bellman_ford.test.cpp"
int main() {
int n, m;
int r;
std::cin >> n >> m >> r;
algorithm::bellman_ford::default_bellman_ford<int> bellman_ford(n, m);
for(int i = 0; i < m; ++i) {
int s, t;
int d;
std::cin >> s >> t >> d;
bellman_ford.add_edge(s, t, d);
}
auto res = bellman_ford.bellman_ford(r);
if(res) {
std::cout << "NEGATIVE CYCLE" << std::endl;
return 0;
}
for(int i = 0; i < n; ++i) {
auto ans = bellman_ford.distance(i);
if(ans == bellman_ford.infinity()) std::cout << "INF" << "\n";
else std::cout << ans << "\n";
}
}